Ba bài Toán của tác giả Việt Nam được chọn vào đề thi Olympic quốc tế
Ba bài Toán của tác giả Việt Nam được chọn vào đề thi
Olympic quốc tế
Có 3 bài Toán của các tác giả là người Việt Nam từng được
chọn làm đề thi Olympic Toán quốc tế (IMO). Trong đó bài của cố PGS Văn Như
Cương được đánh giá thuộc diện khó và thú vị nhất.1.
Bài của tác giả Phan Đức Chính - đề IMO năm 1977
Bài Toán được chọn làm câu số 2 trong đề thi Olympic Toán quốc tế năm 1977 của tác giả Phan Đức Chính như sau:
Trong một dãy hữu hạn các số thực, tổng của 7 số hạng liên tiếp bất kỳ luôn là số âm và tổng của 11 số hạng liên tiếp bất kỳ là số dương. Xác định số lượng số hạng tối đa của dãy số.
Bài Toán của PGS Phan Đức Chính trong đề thi IMO năm 1977, được Viện Nghiên cứu cao cấp về Toán trình bày lại trong một hội thảo mới đây.
2.
Bài Toán của tác giả Văn Như Cương - đề IMO năm 1982
Bài toán được chọn làm câu số 6 trong đề thi Olympic Toán quốc tế năm 1982 của tác giả Văn Như Cương như sau:
Cho S là hình vuông với cạnh là 100. L là một đường gấp khúc không tự cắt tạo thành từ các đoạn thẳng A0A1, A1A2..., A(n-1)An với A0 ≠ An. Giả sử với mỗi điểm P nằm trên chu vi của S đều tồn tại một điểm thuộc L cách P không quá 1/2.
3.
Bài Toán của tác giả Nguyễn Minh Đức - đề IMO năm 1987
Bài Toán được chọn làm câu số 4 trong đề thi Olympic Toán quốc tế năm 1987 của tác giả Nguyễn Minh Đức như sau:
“Prove that there is no function f from the set of non-negative integers
into itself such that f(f(n)) = n + 1987 for every n”.
Dịch:
Chứng minh rằng không tồn tại hàm f xác định trên tập số nguyên không âm, thỏa mãn điều kiện f(f(n)) = n + 1987 với mọi n.
Bài toán của TS Nguyễn Minh Đức trong đề thi IMO năm 1987.
TS Nguyễn Minh Đức là cựu học sinh Trường THPT Chuyên Khoa học Tự nhiên,
từng giành Huy chương Bạc tại IMO năm 1975. Trước khi nghỉ hưu, TS Đức nguyên
là cán bộ nghiên cứu của Viện Công nghệ thông tin thuộc Viện Hàn lâm Khoa học
và Công nghệ Việt Nam.
-----------
Kỳ thi Olympic Toán học quốc tế (IMO) được tổ chức thường niên kể từ năm
1959. Việt Nam bắt đầu tham gia sân chơi này từ năm 1974.
Theo quy trình, trước kỳ thi, trưởng đoàn của mỗi nước sẽ tập hợp các bài Toán đề nghị rồi gửi ban chọn đề của nước đăng cai tổ chức kỳ thi. Tác giả của các bài Toán từ mỗi nước không nhất thiết phải là người trong đoàn mà chỉ cần là người của nước đó.
Thông thường, mỗi năm có hơn 100 bài được gửi đề nghị. Nước đăng cai kỳ thi sẽ chọn ra danh sách rút gọn khoảng 30 bài. Trước khi kỳ thi diễn ra vài ngày, trưởng đoàn các nước sẽ bỏ phiếu để chọn ra 6 bài chính thức cho đề thi năm đó.
Bài Toán của tác giả Nguyễn Minh Đức - đề IMO năm 1987
Bài Toán được chọn làm câu số 4 trong đề thi Olympic Toán quốc tế năm 1987 của tác giả Nguyễn Minh Đức như sau:
Chứng minh rằng không tồn tại hàm f xác định trên tập số nguyên không âm, thỏa mãn điều kiện f(f(n)) = n + 1987 với mọi n.
Bài toán của TS Nguyễn Minh Đức trong đề thi IMO năm 1987.
Theo quy trình, trước kỳ thi, trưởng đoàn của mỗi nước sẽ tập hợp các bài Toán đề nghị rồi gửi ban chọn đề của nước đăng cai tổ chức kỳ thi. Tác giả của các bài Toán từ mỗi nước không nhất thiết phải là người trong đoàn mà chỉ cần là người của nước đó.
Thông thường, mỗi năm có hơn 100 bài được gửi đề nghị. Nước đăng cai kỳ thi sẽ chọn ra danh sách rút gọn khoảng 30 bài. Trước khi kỳ thi diễn ra vài ngày, trưởng đoàn các nước sẽ bỏ phiếu để chọn ra 6 bài chính thức cho đề thi năm đó.
Nhận xét
Đăng nhận xét